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Executive Summary

Research Objectives

Berkeley Lab has for several years been developing methods for selection of optimal microgrid
systems, especially for commercial building applications, and applying these methods in the
Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with
3 major goals:
1. to conduct detailed analysis to find the optimal equipment combination for microgrids at
a few promising commercial building hosts in the two favorable markets of California
and New York,
2. to extend the analysis capability of DER-CAM to include both heat and electricity
storage, and
3. to make an initial effort towards adding consideration of power quality and reliability
(PQR) to the capabilities of DER-CAM.
All of these objectives have been pursued via analysis of the attractiveness of a Consortium for
Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate
100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous
inverter-based variable speed internal combustion engine genset with combined heat and power
(CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts
added to the on-board power electronics of any microgrid device enables stable and safe islanded
operation without the need for complex fast supervisory controls. This approach allows plug and
play development of a microgrid that can potentially provide high PQR with a minimum of
specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge
rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model
enhancement.

DER-CAM

Figure ES 1 demonstrates the fundamental philosophy of the DER-CAM approach. For the
purposes of this study, the graphic can be thought of as showing the energy system of a
commercial building or group of buildings. On the right are the energy services that need to be
provided to building occupants, and on the left are the purchases of commercial fuels entering
the facility. In between are various devices for energy use, conversion, and storage. A building
may often have other fuel opportunities available, and solar is shown in the figure. The goal of
DER-CAM development is to build a model that can solve the entire system shown such that the
entire cost, carbon footprint, other metric, or combination of metrics is minimized. The approach
is fully technology-neutral and can include energy purchases, on-site conversion, both electrical
and thermal local renewable harvesting, and end-use efficiency investments. In this study,
DER-CAM minimizes only the annual costs for providing energy services to the modeled site,
including utility electricity and natural gas purchases plus amortized capital and annual
maintenance costs for distributed generation (DG) investments. In addition to the CM-100
engines, the DER available include solar thermal, photovoltaics (PV) and fuel cells.

Furthermore, system choice considers the simultaneity of solutions, especially regarding the
building cooling problem; that is, multiple technologies can be used for cooling and results
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reflect the benefit of electricity demand displacement by heat-activated or direct-fire cooling that
lowers building peak load, and therefore, the generation requirement. Similarly, operation of
storage is optimized over all time periods of the simulation. Achieving these optimums requires
above all else sophisticated representation of tariffs.

Figure ES 1. Schematic of the energy flow model used in DER-CAM
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Technically, DER-CAM is a mixed-integer linear program (MILP) written and executed in the
General Algebraic Modeling System (GAMS) using the CPLEX solver.

Test Sites

The key site-specific inputs to DER-CAM are hourly energy service requirements aggregated
into the categories shown in Figure ES 1, plus electricity and natural gas tariff structure and
rates. The hourly data requirement is typically the most difficult to meet. Few monitored building
results are available, so almost always the end-use detail must be developed using some form of
building energy use simulation. An earlier market assessment showed that nursing homes and
assisted living facilities, K-12 schools, and data centers are three promising markets, so end-use
data sets were collected for representative example buildings of each of these three types in both
California and New York. The details are shown in Table ES 1.

Table ES 1. Key characteristics of test buildings and sites

annual annual
electricity | electricity NG
floorspace | peak load | consumption | consumption elec. gas
(m?) (kW) (kwh) (therms) vicinity utility | utility | Fspase | Fspeak |
nursing northern
home 31587 958 5761 690 194 522 [CA PG&E [PG&E 0.5 0.1
CA southern SoCal
school 17 652 885 1 508 883 24 868 | CA SCE Gas 0.25 0
northern
data center 617 1788 11420 823 0|CA PG&E [PG&E 1 1
nursing
home 31587 1067 6016 309 243 563 [NYC ConEd [ ConEd 0.5 0.1
NY school 17 652 746 1120 653 32 193 |NYC ConEd | ConEd 0.25 0
datacenter 617 1591 12 070 888 0|NYC ConEd | ConEd 1 1

xi
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Data sets for these example buildings were obtained in diverse ways. The nursing homes are
based on an Oakland example taken from the California Commercial End-Use Survey (CEUS). It
is used as-is for California, but end-use requirements were weather adjusted for New York
conditions. The two schools are standard building models taken from a database of commercial
prototype EnergyPlus models. The data center is based on billing information for a real Silicon
Valley facility, with a climate adjusted version used for New York.

The structure and level of utility rates frequently proves to be a critical determining input, and
these examples are typical in this regard.

Table ES 2. Comparison of the average fuel costs for each case

Average Fuel Costs NG ($/therm) NG ($/kwh) Electricity ($/kwWh)
Nursing Home 1.055 0.036 0.131
CA | School 0.996 0.034 0.172
Data Center 1.055 0.036 0.129
Nursing Home 1.436 0.049 0.140
NY | School 1.436 0.049 0.188
Data Center 1.436 0.049 0.137

Fuel price levels and spark spread are not too different between California and New York, as can
be seen in Table ES 2, but the tariff structures are different. Both Pacific Gas & Electric (PG&E)
and Southern California Edison (SCE) have time-of-use tariffs with stiff demand charges, while
Consolidated Edision (ConEd) has flat energy charges along with a severe demand charge. The
ConkEd tariffs, with flat electrical energy charges, and somewhat higher natural gas costs create
an environment less amenable to microgrid development. The Fj pase and F peak variables in Table
ES 1 refer to assumptions about the extent to which site loads are considered critical. These two
variables are fractions of base and peak loads respectively that must be met during loss of grid
power, i.e. the available on-site generation and storage capacity must exceed these ratings. It is a
goal of this work to add consideration of the reliability benefits of microgrids to DER-CAM
analysis capabilities. The load fractions considered critical by assumption have been shown, but
within the DER-CAM framework an economic value of the added reliability is sought. While it
may sound as if the cost of an alternative, such as backup generation, is a reasonable indicator of
the site’s willingness to pay for the higher reliability, in practice this faces three problems. First,
some critical loads either require backup by code or are of such high value that cost is no object.
Having on-site generation offers limited advantage to such customers. Second, the advantage of
a CERTS microgrid is coverage of relatively short disturbances, e.g. ones for which on-site fuel
storage would not be required. Third, short outages are difficult to include in DER-CAM’s
hourly time resolution. The approach taken in this study is a two-step one. In the first, the true
optimum system is found, and in the second, a system is forced into existence that meets the
critical load requirement. Then a value of reliability is incrementally added to the objective
function until the equivalent cost of the optimum system is achieved. The value necessary for
this equivalency represents the value the site must put on the added reliability for this capability
to be cost effective.

xii
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Equipment Available

One of the key barriers to detailed optimization of building energy systems is the potentially high
computational requirement. This burden arises in part because the number of technology options
is large and the number of possible combinations huge. Also, note that these are difficult
optimization problems because energy purchase from the grid is always a possibility and the
conditions for those purchases are complex because tariffs are complex. Further, with storage
involved, decisions made in any timestep can potentially affect all other timesteps. The upshot of
these conditions is a quite flat surface of alternative choice combinations that have similar
objective function values. In other words, there are a large number of alternative combinations of
equipment that produce similar results and choosing between them is not easy.

An effective shortcut is to include only technologies that experience has shown to be
competitive. Alternatively, computation may be reduced by representing lumpy technologies
with strong diseconomies of small scale as integer alternatives, while representing the others as
continuous functions. The upshot of these two simplifications is the short menu of equipment
shown in Table ES 3 and Table ES 5. Note that representing a technology as continuous does not
mean it cannot exhibit economies of scale, only that such economies are linear and that it can be
sized to exactly match the most desirable capacity and partial units are allowed. For many types
of equipment, this approximation is quite reasonable, e.g. lead acid batteries are available in a
wide range of sizes. Conversely, the scale economies of equipment such as gensets are
considerable and they should be represented as integer technologies.

Table ES 3. Menu of available equipment options, discrete investments

Tecogen CM-100 fuel cell

capacity (kW) 100 200
sprint capacity (kW) 125

installed costs ($/kW) 2400 5005
installed costs with heat recovery ($/kW) 3000 5200
variable maintenance ($/kWh) 0.02 0.03
Efficiency (%), (HHV) 26 35
lifetime (a) 20 10

Table ES 4. Menu of available equipment options, continuous investments

lead-acid thermal flow batter absorption solar hotovoltaics
batteries storage’ y chiller thermal P
intercept costs ($) 295 10000 0 20000 1000 1000
variable costs 220$/kWh and
(/KW or $/kwh) 193 100 21258/kW 127 500 6675
lifetime (a) 5 17 10 15 15 20

! Please note that cold thermal storage is not among the set of available technologies, but could be added.
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Table ES 5. Energy storage parameters

A lead-acid
Description batteries flow battery | thermal
. - portion of energy input to storage that is
charging efficiency (1) useful 0.9 0.84 0.9
. . - portion of energy output from storage that

discharging efficiency (1) s useful | 0.84 |
decay (1) portion of state of charge lost per hour 0.001 0.01 0.01

. maximum portion of rated capacity that can
maximum charge rate (1) be added to storage in an hour 0.1 n/a 0.25
maximum discharge rate | maximum portion of rated capacity that can
Q) be withdrawn from storage in an hour 0.25 n/a 0.25
minimum state of charge | minimum state of charge as apportion of
Q) rated capacity 0.3 0.25 0
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Results

Detailed Microgrid Results

Table ES 6. Nursing homes results

do- invest in all

CA nursing home nothing technologies

Units of CM-100 (units) 3
absorption chiller (kW) 48
Solar thermal (kW) 134
PV (kW) 0
lead-acid batteries (kWh) 0
thermal storage (kWh) 0
electricity bill (k$) 758.02 429.42
NG bill (k$) 205.88 359.14
microgrid equipment (k$) 137.81
total bill (k$) 963.90 926.37
Bill effect (%) -3.89
electricity use (GWh) 5.76 3.23
electricity effect (%) -43.92
NG use (GWh) 5.70 9.99
NG effect (%) 75.36
carbon emissions (tC) 1087.74 945.05
carbon effect (%) -13.12

NYC nursing home no(til(l)i_ng tlenc‘lflensctll(?g?éls
Units of CM-100 (units) 0
absorption chiller (kW) 100
solar thermal (kW) 1438
PV (kW) 0
lead-acid batteries (kWh) 0
thermal storage (kWh) 0
electricity bill (k$) 845.66 825.89
NG bill (k$) 349.84 256.97
microgrid equipment (k$) 78
total bill (k$) 1195.50 1161.27
Bill effect (%) -2.86
electricity use (GWh) 6.02 5.90
electricity effect (%) -1.99
NG use (GWh) 7.14 5.24
NG effect (%) -26.61
carbon emissions (tC) 1555.23 1439.26
carbon effect (%) -7.46

XV

low storage cost &
60% PV incentive

3

40

43

517

2082

47

261.83

362.88

285.45

910.16

-5.58

2.40

-58.33

10.10

77.19

833.96

-23.33

low storage cost &
60% PV incentive

0

112

2350

0

294

4862

823.68

171.46

153

1148.60

-3.92

5.95

-1.16

3.50

-50.98

1361.49

-12.46
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Table ES 7. Schools results

CA school

Units of CM-100 (units)
absorption chiller (kW)
solar thermal (kW)

PV (kW)

Lead-acid batteries (kWh)
thermal storage (kWh)
electricity bill (k$)

NG bill (k)

microgrid equipment (k$)
Total bill (k$)

bill effect (%)

electricity use (GWh)
electricity effect (%)

NG use (GWh)

NG effect (%)

carbon emissions (tC)
carbon effect (%)

NYC school

Units of CM-100 (units)
absorption chiller (kW)
solar thermal (kW)

PV (kW)

Lead-acid batteries (kWh)
thermal storage (kWh)
electricity bill (k$)

NG bill (k)

microgrid equipment (k$)
Total bill (k$)

bill effect (%)

electricity use (GWh)
electricity effect (%)

NG use (GWh)

NG effect (%)

carbon emissions (tC)
carbon effect (%)

do-
nothing

263.93
24.19

288.12

1.51

0.73

360.35

do-
nothing

211.83
46.37

258.20

1.12

0.94

270.65

invest in all
technologies

0

139

65

0

0

0
245.90
26.51
7
279.85
-2.87
1.48
-1.99
0.80
9.59
358.26
-0.58

invest in all
technologies

96
103

204.63
40.37

253.83
-1.69
1.12

0.82
-12.77
263.70
-2.57

XVi

low storage cost &
60% PV incentive

0
101

72

181
1518
41
153.24
23.96
72
249.18
-13.51
1.19
21.19
0.72
-1.37
291.34
-19.15

low storage cost &
60% PV incentive

72

187
166
569
440
147.45
33.76
62
243.56
5.67
0.87
2232
0.69
-26.60
208.67
22.90
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Table ES 8. Data center results

CA data center

Units of CM-100 (units)
absorption chiller (kW)
solar thermal (kW)

PV (kW)

lead-acid batteries (kWh)
thermal storage (kWh)
electricity bill (k$)

NG bill (k$)

microgrid equipment (k$)
total bill (k$)

bill effect (%)

electricity use (GWh)
electricity effect (%)

NG use (GWh)

NG effect (%)

carbon emissions (tC)
carbon effect (%)

NYC data center

Units of CM-100 (units)
absorption chiller (kW)
solar thermal (kW)

PV (kW)

lead-acid batteries (kWh)
thermal storage (kWh)
electricity bill (k$)

NG bill (k$)

microgrid equipment (k$)
total bill (k$)

bill effect (%)

electricity use (GWh)
electricity effect (%)

NG use (GWh)

NG effect (%)

carbon emissions (tC)
carbon effect (%)

do-
nothing

1478.36
1.78

1480.15

11.42

0.00

1598.92

do-
nothing

1654.66
0.15

1654.81

12.07

0.00

2414.18

invest in all

technologies

141

0

0

0

0
1459.46
9.73

4
1473.18
-0.47
11.39
-0.26
0.23

1606.13
0.45

invest in all
technologies

S O O O O O

1654.66
0.15

0
1654.81
0

12.07

0

0.00

0
2414.18
0.00

Xvil

low storage cost &
60% PV incentive

0

116

0

1577
6434

0
949.11
6.01
467
1422.24
-3.91
8.91
-21.98
0.12

1253.97
-21.57

low storage cost &
60% PV incentive

~ © © O

94

0
1651.50
0.15

2
1654.01
0.05
12.07

0

0.00

0
2413.52
-0.03
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Table ES 6 through Table ES 8 show the results for the nursing homes, schools, and data centers,
respectively. The tables show three cases. The no-invest case shows results if the sites buy all
their energy from their local utilities at published tariffs. The invest in all technologies case is the
pure optimum result from DER-CAM. This represents the lowest possible energy cost case and
is the benchmark against which all others can be compared. The first two cases represent the key
microgrid results. In the case of the nursing homes, the CA and NY results are noticeably
different. In CA conditions, three of the Tecogen CM-100 units are selected together with an
absorption chiller that is also fed by solar thermal heat. This proves the only case in which the
CM-100 is chosen based on simple cost effectiveness. NG use increases by a dramatic 75% to
fuel the engines, but the overall energy bill is down by 4% and the carbon footprint by 13%. In
NY by contrast, the Tecogen units are not chosen but absorption chillers using solar thermal heat
are, and the carbon abatement effects are smaller. The CA school also does not pick the Tecogen
units, but solar thermal and absorption cooling are attractive, and in this case, the NY school
results are similar. The cost and carbon reduction benefits are similarly small in both cases. The
data center cases are similarly disappointing with only absorption chilling adopted in the CA
case and nothing in the NY case.

Storage results

A considerable achievement of this project has been the addition of electricity and heat storage
capabilities to DER-CAM. Storage poses a difficult problem because any decision made in any
one time period must consider the effects on all other time periods. There are also some longer
time period problems, for example how might storage on weekends for use on weekdays be
handled, or potentially even storage in winter for use in summer, etc. In general, these issues
have not been addressed and only storage over a day is currently considered. Both traditional
batteries, such as the familiar lead-acid ones, and flow batteries are considered. The key
distinction of the latter technology is that storage capacity and charge-discharge capacity are
quasi-independent because the electrolyte flows through the battery and can be stored in either its
charged or discharged states. All batteries are amenable to optimization using DER-CAM
because finding a good charge-discharge schedule by simple search would be ineffective. Flow
batteries are additionally challenging because of the dual optimization needed to pick both the
storage and charge-discharge capabilities separately.

Unfortunately, as has already been reported above, when available at approximately their
estimated current full cost, no storage technologies are chosen for any of the test sites, and the
same is true for PV. To demonstrate the capabilities for storage and PV adoption and scheduling,
and because these two technologies are connected and are strong candidates for government
support, several cases with various levels of subsidy were conducted. The third case shown in
Table ES 6 through Table ES 8 above, low storage and PV costs, is one in which storage and PV
have been heavily subsidized. In this case, electricity storage costs are reduced from 193 $/kWh
to 60, heat storage is halved from 100 $/kWh to 50, and 60% of PV costs are written down. With
these costs, both electricity storage and heat storage become attractive to the CA nursing home,
as does PV. The PV array is substantial (517 kW) and the battery bank huge (2082 kWh), while
the heat storage is modest. Note that despite these significant subsidies, the net bill savings are
modest, although the carbon footprint is reduced by almost a quarter. Interestingly, the NY
results are almost reversed, with a huge amount of heat storage (4862 kWh) installed, but only
294 kWh of batteries and no PV. Again, given the value of the subsidy, the net effect on costs is
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minimal. At the CA school, all technologies except the CM-100 and flow batteries are selected.
The PV array is sizeable (181 kW), as is the battery bank (1518 kWh). In this case the effect on
costs is more promising (13.5%) and the emissions reduction is 19%. The NY school adopts the
same fleet of technologies with almost as much PV (166 kW), but less electricity and more heat
storage. The lower attraction of batteries in NY (569 kWh) is probably driven by the absence of a
time of use tariff for electrical energy. The CA data center installs both a huge 1577 kW PV
array and a huge battery bank (6434 kWh). Note that this PV array could supply 88% of the
building peak load. Also, the battery bank could meet the peak load of the building for fully 3.6
h. The NY data center results are starkly different with only 4 kW of PV and 94 kWh of
electricity storage adopted. Again, the absence of a significant diurnal electricity price
differential clearly makes a dramatic difference to the outcome. Finally, consider the CA nursing
home schedule for the low storage and PV costs run shown in Figure ES 2.

Figure ES 2. CA nursing home electricity pattern: July weekday low storage & 60% PV incentive

1200
1000
800
Battery
discharging
2 600
400
200
0
1 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24
I Hectricity generation from DG I Utility electricity consumption
mmm Hectricity generation from photovoltaics = Hectricity provided by the battery
Qoolingoffset —e—Total electricity load
—e—Hectricity input to battery

The graphic shows a July weekday from the DER-CAM results. The three engines run at close to
full power all day and the surge capability is actually used briefly at 18:00. The heavy blue line
shows the actual electricity consumed in each hour without DER. This can be thought of as the
electricity service requirement. When the electricity supply exceeds this line, the battery bank is
charging. This occurs from 1:00 to 9:00, as shown by the black line. The PV system produces
from 9:00 to 18:00, and the battery is discharged between 12:00 and 21:00, with a strong peak
discharge at 18:00. The tiny slice of light blue represents the electricity requirement that is
displaced by the absorption chiller. One key result to note is that the nursing home makes
considerable grid electricity purchases over the course of the day, but buys virtually nothing
during the peak period, 12:00-18:00, and this shows the power of the time-of-use tariff. The
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engines, the PV, and the batteries are all used to avoid afternoon grid purchase. In other words,
the batteries are used to save cheap off-peak electricity for consumption during the expensive
on-peak hours; therefore, the PV and the batteries are in competition to provide this service.

PQOR results

To model the PQR benefit of the microgrid, a certain amount of site load was assumed to be
critical. During a macrogrid failure:
e the nursing home must meet 50% of its base load and 10% of its peak load (defined as
any hourly load above the base);
e the school must meet 25% of its base load, and
o the data center must cover its entire load.

For the PQR runs, availability of the different technologies such as ICEs, batteries or PVs is
important. For example, PV cannot be used as backup during the night and batteries might not be
fully charged when a grid failure occurs. Additionally, lead-acid batteries can only be discharged
to 30% of total battery capacity to avoid battery damaging. These boundaries limit the potential
of the different technologies to contribute to sensitive loads during a grid failure.

However, DER-CAM calculates the availability of storage technologies as well as PV depending
on the charge / discharge cycle and solar radiation. The reliability / availability of ICEs and fuel
cells were assumed to be 90%, and there is an 18% to 22% chance that photovoltaics can
contribute to sensitive loads during a grid failure (see also Table ES 9).

To satisfy the sensitive load, the product of the installed technology’s availability factor and its
installed capacity must be greater than the sensitive load. Or, in cases with multiple technologies,
the sum of the products must be greater than the sensitive load. The detailed mathematical
formulations for calculating the average availability can be found in the appendix equations A58
to A62.

Table ES 9. Electric sensitive load supply

technology can it contribute to | average possible contribution of max. installed
electric sensitive loads? | capacity, availability factor (= chance that it

can contribute to sensitive loads)

CM-100 yes 0.90

fuel cell yes 0.90

electric storage | yes 0.15 t0 0.21 (southern CA school)

heat storage no n/a

flow battery yes 1

abs. chiller no n/a

photovoltaic yes 0.18 (NY examples) to 0.22 (southern CA
School)

solar thermal no n/a
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It is further assumed that the necessary PQR features add $25/kW to the capital cost of CM-100
engines plus $100/kW for a fast DER switch, which seamlessly separates the site from the
macrogrid during a grid disturbance. However, the possibility of supporting sensitive loads
during a grid failure also adds benefits to the microgrid. In DER-CAM, these benefits are
currently expressed only as monetary benefits. And since estimates of such benefits are difficult
to find empirically, a set of PQR runs with variable benefits and fixed PQR costs were
performed. Finding an optimal solution which delivers the same total bill costs as run invest all
technologies from Table ES 6 through Table ES 8 provides an estimate of the monetary PQR
benefits necessary to make the microgrid attractive. In other words, the value of PQR derived in
this way is a hurdle that the site must clear to find the microgrid cost effective.

For the CA nursing home, the same equipment as in run invest all technologies from Table ES 6
meets the critical load. Further, the breakeven monetary benefit from PQR features is quite little,
less than $25/kW (or less than 6.5 k$/a added to an annual energy bill of approaching one M$),
with no additional adoption of DER generation necessary. The added reliability benefit certainly
seems promising in this case. For the NY nursing home, the results are more interesting and
show an adoption of two CM-100 units to satisfy the critical load condition. The monetary
benefit from the PQR features is again quite little, less than $25/kW resulting in a similar cost
consequence as its CA equivalent. In the NY nursing home case then, the consideration of PQR
has a small effect on costs but makes a considerable difference to the attractiveness of a
microgrid. Both of these examples support the notion that the nursing home/assisted living sector
might be a promising market for microgrids.

In both of the school examples, DER adoption changes only slightly due to the small critical load
assumed. No additional CM-100 units are installed; the only changes occur in lead-acid battery
adoption; and the benefit from PQR features is low (less than $25/kW). Therefore, for the
schools, a low value of the added reliability is necessary for the adoption of basic microgrid
capability but it comes in the rather traditional form of battery back-up.

The data center critical load requirement is the most demanding, and the microgrid needs to
satisfy 100% of the data center load during a grid failure. This requirement results in massive
CM-100 adoption. The CA data center adopts 16 units and the NY data center 14; however, the
found PQR benefit requirements are higher than for the other examples, $125/kW for CA and
$200/kW for NY. For example, for the CA data center, this cost represents an addition of about
223 k$ to its 1.4 M$ annual energy bill. While these costs are considerable, given the extreme
priority placed on reliability by data centers, they are certainly feasible.

Overall, the results of the reliability analyses are promising, while none of the results are
surprising in and of themselves. For sites at which a microgrid is already or close to being viable,
the added value of reliability can easily enhance the economics. The two nursing homes
substantiate the claim that a large potential market exists at sites where CHP is possible and
reliability has some additional modest value when a significant share of load needs to be
supported. The schools tend to argue that if a microgrid is not attractive absent a reliability
benefit and the sensitive load is small, alternatives to a microgrid are likely to be more appealing,
e.g. traditional back-up. Finally, the data center results show that if sites with significant
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sensitive loads value the reliability benefit high enough — and many such sites are likely to —
then the effect on the attractiveness of a microgrid could be dramatic.

Sensitivity results

Two types of sensitivity cases were completed. One imposed carbon taxes ranging from
$150-1000/tC, and the other applied the prevailing standby tariff to an otherwise favorable
microgird site, i.e. CA nursing home.

The imposition of carbon taxes tended to encourage the adoption of CM-100 gensets, although
the effect was only dramatic in the NYC nursing home case, which installs four units at a carbon
tax rate of $450/tC. The carbon taxes tend to encourage adoption of solar thermal collectors,
which together with heat recovery from the gensets, feed sizable absorption chillers. Additional
storage occurs in a few isolated cases, but PV adoption at its full unsubsidized price never
appears. In fact, at $1000/tC, fuel cells are adopted by the NYC nursing home, while PV still
does not appear.

Application of the PG&E standby tariff to the CA nursing home does not preclude adoption of
gensets, but does result in higher costs because of the high fixed charge in the tariff.
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1. Introduction
1.1 Background

In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption
Model (DER-CAM). Given end-use energy details for a facility, a description of its economic
environment and a menu of available equipment, DER-CAM finds the optimal investment
portfolio and its operating schedule which together minimize the cost of meeting site service,
e.g., cooling, heating, requirements. Past studies have considered combined heat and power
(CHP) technologies. Methods and software have been developed to solve this problem, finding
optimal solutions which take simultaneity into account. This project aims to extend on those
prior capabilities in two key dimensions. In this research storage technologies have been added
as well as power quality and reliability (PQR) features that provide the ability to value the
additional indirect reliability benefit derived from Consortium for Electricity Reliability
Technology Solutions (CERTS) Microgrid capability.

1.2 Purpose of research

This project is intended to determine how attractive on-site generation becomes to a
medium-sized commercial site if economical storage (both electrical and thermal), CHP
opportunities, and PQR benefits are provided in addition to avoiding electricity purchases.
On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from
utility service would provide the facility with ride-through capability for minor grid disturbances.
Three building types in both California and New York are assumed to have a share of their
sensitive electrical load separable. Providing enhanced service to this load fraction has an
unknown value to the facility, which is estimated analytically.

In summary, this project began with 3 major goals:

1. to conduct detailed analysis to find the optimal equipment combination for microgrids at
a few promising commercial building hosts in the two favorable markets of California
and New York,

2. to extend the analysis capability of DER-CAM to include both heat and electricity
storage, and

3. to make an initial effort towards adding consideration of PQR into the capabilities of
DER-CAM.
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2. The Distributed Energy Resources Customer Adoption Model (DER-CAM)

DER-CAM (Siddiqui et al. 2003) is a mixed-integer linear program (MILP) written and executed
in the General Algebraic Modeling System (GAMS). Its objective is to minimize the annual
costs for providing energy services to the modeled site, including utility electricity and natural
gas purchases, amortized capital and annual maintenance costs for distributed generation (DG)
investments. The approach is fully technology-neutral and can include energy purchases, on-site
conversion, both electrical and thermal on-site renewable harvesting, and end-use efficiency
investments. Furthermore, the system choice considers the simultaneity of solutions, especially
regarding the building cooling problem; that is, results reflect the benefit of electricity demand
displacement by heat-activated cooling that lowers building peak load and, therefore, the
generation requirement.

Site-specific inputs to the model are end-use energy loads,” electricity and natural gas tariff
structures and rates, and DG technology investment options. While any equipment could be
incorporated in DER-CAM, the following technologies are considered in this study:’

natural gas-fired reciprocating engines, gas turbines, microturbines, and fuel cells;
photovoltaics (PV) and solar thermal collectors;

traditional batteries, flow batteries, and heat storage;

heat exchangers for application of solar thermal and recovered heat to end-use loads;
direct-fired natural gas chillers; and

heat-driven absorption chillers.

Figure 1 shows a high-level schematic of the energy flow modeled by DER-CAM. Available
energy inputs to the site are solar insolation, utility electricity, and utility natural gas. For a given
site, DER-CAM selects the economically4 optimal combination of utility electricity purchase,
on-site generation, and storage as well as cooling equipment required at each time step to meet
the following end-use loads:
e clectricity-only loads, e.g. lighting and office equipment;
e cooling loads that can be met either by electricity powered compression or by heat
activated absorption cooling, direct-fired natural gas chillers, waste heat or solar heat;
e hot water and space heating loads that can be met by recovered heat or by natural gas;
and
e natural gas-only loads, e.g. mostly cooking that can only be met by natural gas.
The simulation is typically executed for a test year represented by 36 days: a weekday, weekend,
and peak day for each month.

* Three different diurnal profiles are used to represent the set of daily profiles for each month: weekday, peak day,
and weekend day. DER-CAM assumes that three weekdays of each month are peak days.

? Despite the wide variety of technologies that can be considered in DER-CAM, only a small subset of technologies
are used in this work to allow focus on premium power products. See also section “DER Equipment Including
Storage Technologies”.

* DER-CAM’s objective function is to minimize the total energy bill, but this can easily be changed to a carbon
minimizing strategy or some other combination.
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Figure 1. Schematic of the energy flow model used in DER-CAM®
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The outputs of DER-CAM include the optimal DG and storage adoption and an hourly operating
schedule, as well as the resulting costs, fuel consumption, and carbon emissions (Figure 2).
Optimal combinations of equipment involving PV, thermal generation with heat recovery,
thermal heat collection, and heat-activated cooling can be identified in a way that would be
intractable by trial-and-error enumeration of possible combinations. The economics of storage
are particularly complex, both because they require optimization across multiple time steps and
also because of the influence of tariff structures (on-peak, off-peak, and demand charges). Note
that facilities with on-site generation will incur electricity bills more biased toward demand
(peak power) charges and less toward energy charges, thereby making the timing and control of
chargeable peaks of particular operational importance.

The MILP solved by DER-CAM is shown in pseudocode in Figure 3. In minimizing the site’s
annualized energy bill, DER-CAM also has to take into account various constraints. Among
these, the most fundamental ones are the energy-balance and operational constraints which
require that every end-use load has to be met, and that the thermodynamics of energy production,
conversion, and transfer are obeyed.

The recently added storage constraints are essentially inventory balance constraints. The amount
of energy in a storage device at the beginning of a time period is equal to the amount available at
the beginning of the previous time period plus energy charges and minus energy
discharges/losses. Finally, investment and regulatory constraints may be included as needed. A
limit on the acceptable simple payback period is imposed to mimic typical investment decisions
made in practice. Only investment options with a payback period of less than 12 years are
considered for this paper. For a complete mathematical formulation of the MILP with energy
storage solved by DER-CAM, please refer to Appendix A or Siddiqui et al. 2007.

> Please note that thermal storage contains also heat for absorption chillers, and therefore, Figure 1 considers cold
thermal storage indirectly. However, direct cold storage is not considered in DER-CAM at this stage, but can be
added in future versions.
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Figure 2. High-Level schematic of information flow in DER-CAM
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Figure 3. MILP solved by DER-CAM®

MINIMIZE
Annual energy cost:
energy purchase cost
+ amortized DER technology capital cost
+ annual 0&M cost
SUBJECT TO
Energy balance:
- Energy purchased + energy generated exceeds demand
Operational constraints:
- Generators, chillers, etc. must operate within
installed limits
- Heat recovered is limited by generated waste heat
Regulatory constraints:
- Minimum efficiency requirements
- Maximum emission limits
Investment constraints:
- Payback period is constrained
Storage constraints:
- Electricity stored is limited by battery size
- Heat storage is limited by reservoir size

A complete mathematical formulation of DER-CAM can be found in Appendix A.

3. Thesites
3.1 Key characteristics of the test buildings and sites

To estimate the impact of electrical and thermal storage on the installation of DG with and
without CHP, PV, solar thermal systems as well as absorption chillers, the following three types
of buildings in both California and New York, have been analyzed:

% Not all constraints are shown, e.g. flow batteries have more constraints than electrical storage.
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e nursing home: Nursing homes generally have high capacity factors and high electricity
and heat loads which favor distributed generation with heat recovery.

e school: Schools make up a sizable portion of the building stock and frequently have
heated pools which might favor the use of waste heat from DG units or from solar
thermal systems. To assess the impact of heated pools, a school in southern California
(Riverside) is modeled. The corresponding New York City school does not have a pool,
but has a significant space heating requirement.

e data center: Data centers have high critical loads.

Henceforth, the critical load factor (F) is defined as the portion of the maximum electrical load

that must be supplied during a macrogrid disturbance. To be able to consider base’ and peak
loads separately DER-CAM uses F; gase and Fy peak (see also Figure 4)8.

Figure 4. Critical base and peak load for the CA nursing home example
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For example, half of nursing home base load and 10% of the peak load, i.e. above base load, is
considered critical. The school has few sensitive loads while the data center is considered all
sensitive.

7 More precisely, the “base load” is the minimum electricity requirement experienced during any hour in the year.
% For illustration purposes Figure 4 assumes the same profile for every day of the year.
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Table 1. Key characteristics of test buildings and sites

annual
electricity electricity annual NG
size peak load | consumption | consumption elec. gas
(m? (kW) (kwh) (therms) vicinity utility | utility | Fsgase | Fspeak |
nursing
home 31587 958 5761 690 194 522 | northern CA | PG&E | PG&E 0.5 0.1
CA SoCal
School 17 652 885 1 508 883 24 868 [ southern CA [ SCE Gas 0.25 0.0
datacenter 617 1788 11420 823 0 | northern CA |PG&E | PG&E 1.0 1.0
nursing
home 31587 1 067 6016309 243 563 |[NYC ConEd [ ConEd 0.5 0.1
NY School 17 652 746 1 120 653 32193 |NYC ConEd [ ConEd 0.25 0.0
datacenter 617 1 591 12 070 888 0|NYC ConEd | ConEd 1.0 1.0

3.2 CA nursing home

The California nursing home, which is located in northern California, is characterized by
relatively stable seasonal demand, and therefore, only July and January profiles are shown in
Figure 5. The complete data set for a representative full care 24 hour nursing facility with five
floors and a total area of 31 587 m”® (340 000 sq. ft) was obtained from the California Energy
Commission (CEC). This is a site from the California Commercial End-Use Survey (CEUS).

Figure 5. CA nursing home January and July weekday electricity® and total heat (space + water
heating)' demand
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As can be seen in Figure 5, the off-peak heat demand is roughly 60% of the peak demand.
Additionally, during the daytime hours, heat can be used to lower the electrical peak. When
cooling demand increases, this can constitute a stable heat sink if waste heat for absorption
chillers is considered. Finally, the electricity demand coincides with the total heat demand and
this favors the installation of DG units with CHP.

The simultaneous use of heating and cooling is caused by a) the complexity of nursing facilities
where heating and cooling can appear in different zones at the same time and b) hot water loads.

3.3 CA school

Load profiles for a 17 652 m* (190 000 sq. ft) multi-building school with a heated pool have been
obtained from EnergyPlus simulations and used as inputs for DER-CAM. Climate data from
southern California (Riverside) have been used within the EnergyPlus simulations. A complete
description of the EnergPlus building module can be found at DOE Commercial Building
Integration Benchmark Input Table 2007.

The following end-use loads are considered within DER-CAM and are obtained from
EnergyPlus:

e clectricity-only loads, e.g. lighting and office equipment;

e cooling loads that can be met by electricity powered compression, heat activated
absorption cooling (using waste or solar heat), direct-fired natural gas absorption, or
mechanical chillers;

e hot water and space heating loads that can be met by direct natural gas combustion, waste
heat recovery, or solar thermal heat; and,

e natural gas-only loads, e.g. mostly cooking that can be met only by natural gas.

Please note that three different diurnal profiles are used to represent the set of daily end-use
profiles for each month within DER-CAM: weekday, peak day, and weekend day. DER-CAM

assumes that three weekdays of each month are peak days and the representative weekday profile
is used for all weekdays except the three peak days.

Figure 6. Layout of bi-level multi-building secondary school in Southern California
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source: Huang 1991
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Figure 7. CA school weekday total electricity (inclusive of cooling)™* demand
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June, July, and August are school holidays so no cooling demand occurs in those months.

Figure 8. CA school weekday total heat (space + water heating) demand*?
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3.4 CA datacenter

The data center is located in northern California (Sunnyvale) and has 617 m” (6 638 sq. ft.) of
server space dedicated to the data center’s internal data management needs. A Hess combined
cooling heat and power (CCHP) system was installed approximately two years ago. However,
the increasing natural gas price makes operation uneconomical, as shown by the results in
section 6.3.

The peak electrical load is 1 788 kW. Designed so that the electrical base load demand could be
entirely met by the Hess Microgen reciprocating engine CHP units, the system is now mainly
operated in “peak shaving” mode. Base load operation is no longer economical with the recent
increased cost of natural gas, although using less electricity during peak times still enables the
company to buy power at a lower rate. Additionally, for this study, 100% of the load is assumed
critical and this can favor the installation of distributed generation (see also section 6.3).

In Sunnyvale’s low humidity climate where summer daytime heat is often paired with coolness
in the evening, intelligent design of the cooling system can significantly reduce electrical
demand. If the temperature outside is below 18°C (65°F), an economizer brings in outside air,
which is enough to cool the facility for a third of the year. For the remaining two-thirds of the
year, the facility needs supplemental cooling. The impact of the economizer is considered in
Figure 10 and in the corresponding DER-CAM runs.

For this research, the de minimus heat demand and corresponding natural gas consumption is

ignored. This aspect of data centers as “non-traditional” CHP candidates makes them of special
research interest.

Figure 9. CA data center weekday electricity demand
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The electricity demand from Figure 9 also contains cooling related auxiliary demand, e.g. fans,
and therefore, the electricity demand goes up with the cooling demand.

Figure 10. CA data center weekday cooling demand*®
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3.5 NYC nursing home

The NYC nursing home is based on the CA nursing home data. Regression analyses between the
hourly Oakland temperature data and hourly cooling and heating demand were performed for the
CA nursing home. This procedure delivers two equations that describe the cooling and heating
dependency on the temperature'*.

Demand ., = 20-Temperature —200 (1)
Demand,,,,;,, = 3866.7 —166.67 - Temperature (2)
Demandcooiing kW

DemandHeating kW

Temperature °C

Insertion of NYC hourly temperature data allows estimation of the heating and cooling demand
for the NYC nursing home (see Figure 11). Please note that this procedure assumes that the NYC
nursing home is exactly the same size, zoning, and design as the California nursing home.

13 Expressed in terms of electricity (kW) of an electric chiller with an effective COP of 4.5.
' This calculation neglects the impact of humidity.
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Figure 11. NYC nursing home January and July weekday electricity’® and total heat (space + water
heating)' demand
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One major difference between the NYC and the CA nursing homes is the constant total NYC
heating load. The off-peak heat demand is roughly 80% of the peak heat demand on a typical
January weekday. Another major difference is the higher cooling load in NYC due to higher
summer temperatures; however, in contrast to the CA facility, the NYC winter cooling load is
almost zero.

3.6 NYC school

To simulate the energy demand of the single building school with 17 652 m?® (190 000 sq. ft)
without a heated pool, climate data from New York City (La Guardia) were used for the
EnergyPlus runs. A complete description of the EnergPlus building module can be found at DOE
Commercial Building Integration Benchmark Input Table 2007.

!5 Please note that cooling demand is expressed in electricity consumption of the electric chiller with an assumed
COP of 4.5.
"1 kW =3412.14 BTU/h
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Figure 12. Layout of three storey secondary school building in New York City

&

Source: Huang 1991

Figure 13. NYC school weekday total electricity (inclusive of cooling)'’ demand
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Again as for the CA school, there is no cooling during the summer months of June, July, and
August, which results in the highest observed electricity demand occurring in September.

'7 Please note that cooling demand is expressed in electricity consumption of the electric chiller with an assumed
COP of 4.5.
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Figure 14. NYC school weekday total heat (space + water heating) demand'®
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3.7 NYC data center

The NYC data center is based on the CA data center but uses a different cooling load due to the
absence of economizers and the NYC temperatures. The relation between cooling demand and
temperature for the CA data center was found based on a regression analysis (see Equation 3).
This relationship, together with average hourly NYC temperatures from Figure 15, was used to
determine the cooling load at the NYC data center.

Demand .,y =9.507 - Temperature —225 3)
Temperature °C

Without economizers, which would have been operating during night hours, the cooling load of
the NYC data center increases, especially during night hours (see also Figure 10 and Figure 17).

The electricity demand from Figure 16 also contains cooling fan demand, and therefore,
electricity demand goes up with the cooling demand.

81 kW =3412.14 BTU/
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Figure 15. Average NYC temperatures used for the NYC data center
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Figure 16. NYC data center weekday electricity demand
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Figure 17. NYC data center weekday cooling demand*®
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4. Brief description of technologies

This chapter briefly describes some of the technologies considered in DER-CAM and for this
study and does not constitute a comprehensive description of currently available technologies.
For example, further information can be found at Schoenung et al. 1996, 2003, EPRI-DOE
Handbook 2003, Goldstein, L. et al. 2003, DOE Electricity Delivery and Energy Reliability as
well as the Pacific Region CHP Application Center.

4.1 Electrical storage

There are various electrical storage systems, depending on the applications, such as power
quality enhancement, uninterruptable power supply (UPS), energy management, and large scale
storage for electric utilities. In terms of daily energy management for microgrids or single
buildings only lead-acid batteries, lithium ion (Li-ion) batteries, flow batteries, and sodium sulfur
batteries (NaS) are considered in this work. Further information on batteries can be also found at
Schoenung et al. 2003, EPRI-DOE Handbook 2003 and at the Electricity Storage Association.

4.1.1 Lead-acid batteries

Lead-acid batteries are widely used in the electric storage devices found in everything from
vehicles to building UPS’s. Many conventional building electrical storage systems are based on
lead acid batteries, which are frequently the least expensive option. Lead-acid batteries are often
considered the first candidate for electrical energy storage or load management. Although their
energy mass density is among the lowest, around 30-40 Wh/kg, lead acid batteries are reliable at
high surge currents, which are needed for vehicles, data centers, and telecommunication

19 Expressed in terms of electricity usage (kW) of an electric chiller with a COP of 4.5.
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facilities. Lead acid batteries typically cost about $100 per kWh for “wet” types and between
$125 and $200 per kWh for more advanced “valve regulated” types (Schoenung et al. 1996).
Their roundtrip electrical efficiency typically ranges between 70% to 85% and they usually last
up to 1000 charge/discharge cycles. Despite their ubiquity and low cost, alternatives are being
developed due to the low storage capacity, the toxic materials used in manufacturing, and the
impacts of their disposal on the environment.

4.1.2 Lithium ion (Li-ion) batteries

Li-ion batteries are widely used for mobile equipment, e.g., cell phones and laptops, because of
their high energy storage mass densities, typically between 150-200 Wh/kg. Li-ion is promising
as an alternative storage medium for replacing lead-acid or nickel metal hydride (Ni-MH) for
hybrid vehicles. Larger sized Li-ion batteries can also be used for energy management and as
building UPS. However, a major drawback is their high capital cost of $500/kWh-$1500/kWh.
In contrast, their advantage is lifespan, which ranges from 1200 to 3000 charge/discharge cycles.
Compared to conventional lead and nickel based batteries, this technology takes up less space
and recharges faster. Typical charge/discharge efficiencies can reach 85%. At lower costs, Li-ion
batteries could significantly enable large scale deployment of plug-in vehicles that would
contribute significantly to DG and PQ for the grid.

4.1.3 Sodium sulfur (NaS) batteries

Sodium sulfur (NaS) batteries have high power capacity, up to MW scale. Their energy/mass
density is approximately 120 Wh/kg, which is three times that of lead-acid batteries. Their
charge/discharge efficiency approaches 90%, life cycle time is up to 2500 cycles, and cost
roughly $600/kWh. NaS batteries can be used for peak shaving, compensation of variable PV
output, and energy management. One big disadvantage of NaS batteries is that they have to
always be on and consume electricity in order to maintain high operational temperature (320-
340°C).

4.1.4 Flow batteries

Although a relatively new technology, flow battery systems show many advantages over
conventional batteries. Not only can flow battery cells be safely discharged completely, they can
exceed over 10 000 charge/discharge cycles with almost no loss in performance. Flow batteries
use liquid electrolytes. They are stored in tanks and pumped to cell stacks for charge or discharge
purposes. One major advantage is that energy and power capacities are completely independent
of each other; energy capacity (kWh) is determined by the electrolyte tank size and power
capacity (kW) depends on the size of pumps and on the cell stack. The electrolyte materials
depend on the manufacturers and vanadium redox batteries (VRB) or zinc bromine batteries
(ZBB) are in general use.

VRB systems are designed to store and release energy over extended periods, but they can also
be used for full UPS. Conventional UPS devices are not designed for energy storage. The cells
run in the range of a few hundred kW to MW in size and cost $500 to $800 per kWh. As the
overall capacity of the system increases in size, the cost per kWh decreases significantly. For
larger systems, the incremental cost of the cells is expected to be approximately $220 per kWh
(EPRI). The power related costs are typically in the range of $2000/kW, which do not consider
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the costs for grid connection or engineering planning (EPRI). The biggest disadvantage seems to
be the high cost. One reason is that flow batteries need stable environmental conditions, often
requiring buildings around the batteries, which creates high cost uncertainty.

Table 2. Key Characteristics of selected electric storage systems (see also Schoenung et al. 2003 and
EPRI-DOE Storage Handbook 2003)

Lead |Lithium [Sodium Vanadium Redox Battery
Acid | (Li-ion) [ Sulfur (NaS)
Capital Cost [ 100 — | 500- 600 500-800 (expected future
($/kWh) 200 1500 incremental costs of ca. 220)
Power related | 125- 175 - |150 2125
Costs ($/kW) 175 200
Maintenance 5-15 |10-25 (20 20
Costs ($/kW a)
Energy  Density {30 - [150 - |100-120 25
(Wh/kg) 40 200
Lifespan (cycles) | 500- 1200- 2500 13,000+
800 3000
Depth of | 80 80 100 100
Discharge
Charge/Discharge [70 — |85 90 85
Efficiency 90

4.2 Fuel cells

A fuel cell converts energy by using an electrochemical process, similar to a battery. No
combustion takes place. The main difference to a battery is the continuous flow of hydrogen (H,)
and oxygen (O;) that is needed to keep the fuel cell working; and fuel cells cannot store energy
like batteries. The key element is the membrane, e.g. molten carbonate, which only allows the
H+ ions to travel to the cathode where H+, electrons and O, react to form water, the only “waste
product” of a fuel cell. The electrons have to take the “detour” through the external circuit which
connects the anode and cathode, and this flow of electrons constitutes a direct current. In this
way, a maximum voltage of 1.23V per cell can be achieved. Stacking of such cells creates higher
voltages. A comprehensive description of fuel cells can be found at Goldstein et al. 2003.

4.2.1 Proton-Exchange Membrane Fuel Cell (PEMFC)

PEMFCs have low operating temperatures of approximately 65-85°C (Goldstein et al. 2003) and
are scalable. PEMFCs are small as well as light and typical applications are fuel cell vehicles and
stationary distributed generation, i.e. micro-CHPs. One disadvantage is that they need pure
hydrogen while some other types of fuel cells can accept hydro-carbon fuels because inner
reforming is available. Additionally, the electricity generation efficiency ranges only from 30%
to 35% (HHV).

422 Solid-Oxide Fuel Cell (SOFC)

SOFC is a promising technology for mid-size CHP systems. Easier operation and maintenance
are realized by the use of a solid electrolyte. In addition, relatively high electricity generation
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efficiency of > 45% (HHV) can be achieved and the recovered heat obtained as steam so that
high efficiency double effect chillers can be attached (see also section 4.4). The high operational
temperature of ca.750°C - 1000°C (Goldstein et al. 2003) enables inner reforming of fuel, i.e.
hydro-carbon fuel is automatically reformed to hydrogen inside the fuel cell systems.

4.2.3 Molten Carbonate Fuel Cell (MCFC)

MCEFCs use alkali metal carbonates (Li, Na, K) as the electrolyte and have been commercialized
for mid-size to large scale distributed generation systems e.g., 300 kW to 2.4 MW. Electric
efficiencies of 42% (HHV) can be achieved. The typical operating temperature is 650 °C
(Goldstein et al. 2003) and this allows high temperature waste heat utilization.

4.2.4 Phosphoric Acid Fuel Cell (PAFC)

PAFCs are considered to be the most established fuel cell technology and are typically used for
on-site CHP systems. The electric efficiency is approximately 35% (HHV) with operation
temperatures of approximately 200 °C. The reliability in commercial usage ranges typical from
90% to 95% (Goldstein et al. 2003). PAFCs use expensive materials such as platinum and this
keeps installation costs very high, and therefore, PAFCs are being replaced by other cheaper fuel
cell types. Additionally, pure hydrogen must be supplied since inner reforming is not available.

Table 3 shows the key performance and economic parameters of stationary fuel cell systems. The

lifetime in years is based on 8760 hours/year and depending on the frequency of the usage in 